Modeling and analysis of stochastic invasion processes.

نویسندگان

  • M A Lewis
  • S Pacala
چکیده

In this paper we derive spatially explicit equations to describe a stochastic invasion process. Parents are assumed to produce a random number of offspring which then disperse according to a spatial redistribution kernel. Equations for population moments, such as expected density and covariance averaged over an ensemble of identical stochastic processes, take the form of deterministic integro-difference equations. These equations describe the spatial spread of population moments as the invasion progresses. We use the second order moments to analyse two basic properties of the invasion. The first property is 'permanence of form' in the correlation structure of the wave. Analysis of the asymptotic form of the invasion wave shows that either (i) the covariance in the leading edge of the wave of invasion asymptotically achieves a permanence of form with a characteristic structure described by an unchanging spatial correlation function, or (ii) the leading edge of the wave has no asymptotic permanence of form with the length scales of spatial correlations continually increasing over time. Which of these two outcomes pertains is governed by a single statistic, phi which depends upon the shape of the dispersal kernel and the net reproductive number. The second property of the invasion is its patchy structure. Patchiness, defined in terms of spatial correlations on separate short (within patch) and long (between patch) spatial scales, is linked to the dispersal kernel. Analysis shows how a leptokurtic dispersal kernel gives rise to patchiness in spread of a population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Useful Family of Stochastic Processes for Modeling Shape Diffusions

 One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...

متن کامل

A survey on random walk-based stochastic modeling in eukaryotic cell migration with emphasis on its application in cancer

Impairments in cell migration processes may cause various diseases, among which cancer cell metastasis, tumor angiogenesis, and the disability of immune cells to infiltrate into tumors are prominent ones. Mathematical modeling has been widely used to analyze the cell migration process. Cell migration is a complicated process and requires statistical methods such as random walk for proper analys...

متن کامل

A survey on random walk-based stochastic modeling in eukaryotic cell migration with emphasis on its application in cancer

Impairments in cell migration processes may cause various diseases, among which cancer cell metastasis, tumor angiogenesis, and the disability of immune cells to infiltrate into tumors are prominent ones. Mathematical modeling has been widely used to analyze the cell migration process. Cell migration is a complicated process and requires statistical methods such as random walk for proper analys...

متن کامل

A Statistical Study of two Diffusion Processes on Torus and Their Applications

Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...

متن کامل

Formal approach on modeling and predicting of software system security: Stochastic petri net

To evaluate and predict component-based software security, a two-dimensional model of software security is proposed by Stochastic Petri Net in this paper. In this approach, the software security is modeled by graphical presentation ability of Petri nets, and the quantitative prediction is provided by the evaluation capability of Stochastic Petri Net and the computing power of Markov chain. Each...

متن کامل

Numerical modeling of economic uncertainty

Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Fo-cusing on discounted cash flow analysis numerical results are presented, comparisons are made between alter-native modeling methods, and characteristics of the methods are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2000